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The lift force on an arbitrarily shaped body in a
steady incompressible inviscid linear shear flow

with weak strain
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(Received 10 August 2001 and in revised form 16 January 2003)

This paper presents a mathematical derivation using the classical theory of fluid
dynamics for the force on an arbitrarily shaped body in a linear shear flow. To make
the analysis tractable, the problem is linearized by assuming that the strain rate is
weak and neglecting terms of the order of the strain rate squared. The argument
generalizes previous established analytical results due to Darwin regarding the drift-
volume and Lighthill for the asymptotic form of the rotational velocity field induced
by the body. The final expression for the force is determined by generalizing an
analytical argument due to Auton for the sphere. The results identify for the first
time a rotational lift force component that occurs only when the body shape is truly
asymmetric.

1. Introduction
The determination of the lift force on an arbitrarily shaped body in an inviscid

incompressible fluid is of both fundamental and practical importance in fluid
dynamics. In particular, the problem has high relevance to the study of bubble
dynamics in turbulent flows with high Reynolds number. An air bubble in water, for
example, experiences very little tangential stress thus making the free-slip boundary
condition valid. The only analytic solution for three-dimensional bodies has been
derived by Auton (1987) for the sphere, its symmetry providing simplifications in the
analysis. In recognition of the continuing importance of the problem, Magnaudet &
Legendre (1998) and Legendre & Magnaudet (1998) have made numerical calculations
of the lift force on a spherical bubble for a range of Reynolds numbers and have
investigated inviscid flow in the limit of large Reynolds number. The focus of this
paper is on finding an analytical solution and, therefore, it is instructive to first discuss
relevant theoretical studies. Together with the theoretical proof of Auton (1987) we
must also consider the work on drift of both Darwin (1953) and Lighthill (1956, 1957).
Drift, as discussed in § 1 of Lighthill, concerns the movement of material particles
in steady uniform irrotational flow past bodies. Its relevance to this problem makes
it the subject of more recent studies by Benjamin (1986), Eames, Belcher & Hunt
(1994) and Yih (1985, 1995, 1997). In order to explain the relevance of drift to this
study we shall introduce the concept of the local drift vector di corresponding to the
irrotational velocity field vi past the body.
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The ambient velocity field Ui for a uniform flow has the form

Ui = Uδ1i . (1.1)

Here, U is constant in space and time. Of its own accord, Ui would give rise to linear
streamlines, as defined by

xi(U) = x−∞
i + Utδ1i = x1δ1i + x−∞

i �=1, (1.2)

which we can imagine as starting at some far upstream position x−∞
i . Here, the

superscript −∞ indicates that the starting position is associated with a large negative
value of x1, namely x1 = x−∞

1 . The vector x−∞
i �=1 = (0, x−∞

2 , x−∞
3 ) denotes the finite

off-axis coordinates of the starting position.
The irrotational velocity field vi in the vicinity of the body, therefore, has the form

vi = Uδ1i + �vi. (1.3)

Here, �vi is the irrotational disturbance velocity, so called because it is a perturbation
to the uniform ambient velocity field caused by the body. Necessarily, therefore, vi

satisfies the normal velocity boundary condition vi ni |B = 0 (here |B denotes evaluation
on the surface SB of the body). The streamlines corresponding to vi are then defined
by

xi(v) = x−∞
i +

∫ t

−∞
vi dt. (1.4)

Here, for consistency, time is defined as equal to −∞ at the particle starting positions.
The local drift, or drift vector di can now be defined as the relative displacement of
fluid particles away from the positions they would have if moving with the ambient
flow, thus

xi(v) = x−∞
i �=1 + Utδ1i − di . (1.5)

Note that because the problem is steady, di is a function only of the space variable
x. It is, however, also considered here to be a function of time when viewed relative
to a particle moving with the fluid. The position vector x in the fluid, therefore, also
coincides with a fluid particle that started at position x−∞ at time t−∞ and has reached
the point x at time t . Thus, we can then write x = x(t), but in recognition that the
time t is strictly a function of x. Darwin (1953) is particularly concerned with the
limiting value of drift far downstream of the body. In particular t+∞ is a function of
x−∞

2 and x−∞
3 . Thus, if we adopt the superscript +∞ to denote the far downstream,

then taking the limit of (1.5), as t → t+∞ = +∞, we obtain in (1.6) below Darwin’s
definition of total drift, here denoted Di

x+∞
i = x−∞

i �=1 + Ut+∞δ1i − Di . (1.6)

Importantly, in the case of the sphere, the symmetry of the flow results in the far
downstream particles having the same off-axial displacements in the far downstream
plane as they did at their starting positions. In our equation (1.6) this amounts to
x+∞

i �=1 = x−∞
i �=1 from which it follows that Di �=1 = 0 and, therefore, the only non-zero

total drift component for the sphere is the axial component D1. One implication of
the body having arbitrary shape is that the off-axial total drift components Di �=1 are
non-zero and, therefore, this paper must address the application of Darwin’s work to
this situation.

Lighthill (1956) explores the interrelationship between drift and the rotational
disturbance velocity field �wi generated by a body in a steady uniform shear flow
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whose ambient velocity has the form

Ui = (U − Ωx2) δ1i . (1.7)

The corresponding ambient vorticity field Ωi is then equal to

Ωi = Ωδ3i . (1.8)

In this case, the body gives rise to the irrotational disturbance velocity �vi defined
above as well as a disturbance vorticity field �ωi whose associated rotational
disturbance velocity is �wi . Thus, the total velocity field ui is given by

ui = vi + wi = (Uδ1i + �vi) + (−Ωx2δ1i + �wi). (1.9)

The rotational velocity wi must, therefore, satisfy the normal boundary condition
wini |B = 0 on SB . As explained at the beginning of § 3 of Lighthill (1956, p. 36),
�wi must equal the sum of the Biot-Savart integral �wBS

i and a corresponding
irrotational velocity �vΩ

i , the latter being required to satisfy the velocity boundary
condition. Thus

wi = −Ωx2δ1i + �wBS
i (u) + �vΩ

i (u). (1.10)

�wBS
i is defined by (2.4.11) of Batchelor (1967, p. 87) as the volume integral (1.11)

taken over the whole of space, including the region VB in the interior the body. Here,
ξ denotes the distance between the position vector xl and the integration variable x ′

l

namely ξ 2 = (xl − x ′
l )(xl − x ′

l ). The disturbance vorticy �ωj is analytically continued
into the interior of the body by solving the Laplace problem for a potential function ψ ,
where ψ,j = �ωj , which satisfies the normal boundary condition ψ,jnj |B = �ωjnj |B
on the surface of the body.

�wBS
i (u) =

1

4π
εijk

∫
�ω′

j (u)
∂

∂x ′
k

(ξ−1) dv′. (1.11)

Here, the functional notation (u) is being used to make explicit the relationship of
the quantities with the velocity field ui .

We can now explore the interrelationship between the rotational velocity and drift.
As explained in Batchelor (1967, pp. 274, 275), the vortex tubes are frozen into an
inviscid incompressible flow and the local vorticity field ωj (u), therefore, is generated
from the ambient vorticity Ωi by the distortion of the vortex tubes caused by the
velocity field ui . The relationship is defined by (5.3.9) of Batchelor as the tensor
product of the distortion tensor ∂xi(u)/∂x−∞

j and the ambient vorticity Ωj , namely

ωi(u) =
∂xi(u)

∂x−∞
j

Ωj . (1.12)

Here, the particle positions xi(u) at time t are viewed as a function of their starting
coordinates x−∞

i . The disturbance vorticity is, therefore, related to the drift vector by
substituting (1.5) and (1.8) into (1.12) to give

�ωi(u) =
−∂di(u)

∂x−∞
j

Ωj = −Ω
∂di(u)

∂x−∞
3

. (1.13)

To make the analysis tractable, Lighthill linearizes his analysis with respect to wi

by assuming that the strain rate is weak or more precisely that the strain-induced
velocity aBΩ is much smaller than the relative velocity U, namely

aBΩ/U � 1, O
(
a2

BΩ2/U 2
)

≡ 0. (1.14)
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Figure 1. Coordinate systems, the body SB and the surfaces S and S̃.

Here, aB is a length scale associated with the body which can be defined in terms
of the volume VB of the body as aB = V1/3

B . Under this assumption, therefore,
all terms whose order is proportional to Ω2 are neglected. Thus, because the
disturbance vorticity �ωi(u) and the rotational velocity field wi are of order O(Ω) and
O(aBΩ), respectively, then di(u) = di(v)+O(a2

BΩ/U ) and we can adopt the following
approximation �ωi(v) for the disturbance vorticity �ωi(u) with a negligible error of
O(aBΩ2/U )

�ωi(v) = −Ω∂di(v)/∂x−∞
3 . (1.15)

Here, the functional dependence of di upon vi indicates that we need only take
account of the distortion caused by the irrotational velocity field vi when calculating
the rotational disturbance velocity. It is now evident from (1.15) why the analysis
of the rotational velocity field is integrally related to the study of drift in the
corresponding irrotational flow. Furthermore, the vorticity �ω+∞

i in the trailing vortex
far downstream of the body, as discussed in Lighthill (1956, p. 35), is asymptotically
independent of x1 and is related to the total drift Di by

�ω+∞
i = −Ω∂Di/∂x−∞

3 + O(aBΩ2/U ). (1.16)

The final part of our argument is to determine the force on the body using the
analytical approach employed by Auton (1987). In his § 6, Auton applies the divergence
theorem to the momentum equation, written in the form (1/ρ0)p,i +(uiuj ),j = 0 for

incompressible flows, in the large volume Ṽ − VB surrounding the body VB . Here
Ṽ, as shown in figure 1, is defined as being enclosed by the far upstream plane
x−∞

1 = −X̃, the far downstream plane x+∞
1 = +X̃ and the stream surface of the

irrotational velocity field vi originating from the circle ρ−∞ = Σ̃ . His analysis requires
that the streamwise length of Ṽ be much greater than its radius and, therefore,
aB � Σ̃ � X̃. We then obtain (1.17) which is equivalent to (6.1) of Auton (1987) for
the force fi on the body in terms of the limit, as Σ̃ and X̃ → +∞, of an integral over
the ‘asymptotic’ surface S̃ of Ṽ

1

ρ0

fi = lim
X̃,Σ̃→+∞

∫
S̃

(
− 1

ρ0

pni − uiujnj

)
ds. (1.17)
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Note, it is assumed that the ratio Σ̃/X̃ → 0 as Σ̃ and X̃ → +∞. Now from Batchelor
(1967, p. 405) the limit of integral (1.17) vanishes identically in the absence of vorticity
(Ω = 0) since then ui = vi and the force fi becomes equal to that on a body in
an irrotational flow with uniform steady ambient velocity. It is then possible to
simplify the integrand of (1.17), under the assumption that terms whose orders are
proportional to Ω2 can be neglected, to involve only the asymptotic values of the
rotational disturbance velocity. In the case of a sphere, Auton arrives at his equation
(6.16) which is equivalent to (1.18) below

1

ρ0

fi = −VB CM UΩδ2i . (1.18)

Note that the sign in Auton’s (6.16) is misprinted.
The analysis in our paper will parallel the three steps discussed above. First, the

application of Darwin’s work to an arbitrarily shaped body. Secondly, the derivation
of the asymptotic form for the rotational disturbance velocity field for an arbitrarily
shaped body as was derived for a sphere by Lighthill (1956, 1957). Finally, the
generalization of Auton’s argument (1987, § 6) to determine the expression for the lift
force.

2. Problem formulation
We shall aim to employ tensor notation whenever possible. In doing so we have

found it very helpful to introduce the notation Ti �=1 to represent that part of the
tensor Ti for which i �= 1. Thus, we can write Ti = T1δ1i + Ti �=1. This notation allows
us to express tensors in terms of their components parallel T1δ1i and perpendicular
Ti �=1 to the direction of motion. In particular, therefore, the position vector xi has the
unique decomposition

xi = x1δ1i + xi �=1 = x1δ1i + ρλi . (2.1)

Here, λi is the cylindrical polar unit angular vector defined as

λi = (0, cos λ, sin λ). (2.2)

We will find that the angular vector λj will occur in many of the integrals over the
interval 0 < λ < 2π when the following identities apply∫ 2π

0

λi dλ = 0;

∫ 2π

0

λiλj dλ = πδij �=1;

∫ 2π

0

λiλjλk dλ = 0. (2.3)

To avoid repetitive use of integral signs we shall conduct much of our analysis in
terms only of the integrands. Thus, we have adopted the equivalence notation (≡)
between integrands to denote identity of the corresponding integrals. This amounts
to dropping terms that are a function of the azimuthal angle λ whose integrals are
identically zero.

Now we consider various notational aspects of the disturbance velocity fields. The
irrotational disturbance velocity �vi will be defined as the gradient of the disturbance
velocity potential �ϕ thus

�vi = U�ϕ,i. (2.4a)

Note that in order to ensure �ϕ is single-valued, and the corresponding Laplace
problem correctly posed, the shape of the body must be such that the surrounding
fluid region is singly connected. See, for example, Batchelor (1967, § 2.7). From p. 121
of Batchelor it follows that the disturbance potential and the irrotational disturbance
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velocity have the following asymptotic approximations at large radial distances from
the body

�ϕ ∼ −clxlr
−3, �vi ∼ −clU (δlir

−3 − 3xlxir
−5). (2.4b)

This particular definition of the velocity potential has been chosen to be consistent
with that used by Lighthill (1956) so as to ensure that the asymptotic coefficients cl

have the dimensions of the body’s volume, namely cl = O(a3
B). As explained in § 1,

the rotational velocity wi given by (1.10) can be approximated to order O(a2
BΩ2/U )

by

wi = −Ωx2δ1i + �wBS
i (v) + �vΩ

i (v). (2.5a)

Note that the irrotational velocity �vΩ
i (v) could have a non-zero volume flux at

the surface of the body, even though the body is rigid. This is because the zero-
flux velocity boundary condition wini |B = 0 does not exclude the possibility that
the boundary volume flux induced by the Biot-Savart integral �wBS

i (v) is non zero.
Writing cΩ as the volume flux then, as explained in Batchelor (1967, p. 121), the
leading-order asymptotic form for �vΩ

i (v) is given by

�vΩ
i ∼ ΩcΩ (xir

−3). (2.5b)

We shall parallel the argument of Lighthill and express �wBS
i (v) as the sum of three

contributions �wi(I), �wi(II), �wi(III) corresponding to three subdivisions V(I), V(II)

and V(III) of the integration domain (the whole of space) of the Biot-Savart integral.
Thus, we write

�wBS
i (v) = �wi (I) + �wi (II) + �wi (III). (2.6)

Since the streamlines xi(v) of the irrotational velocity field vi span the whole of space
outside of the body then the regions can be defined in terms of the streamlines xi(v)
as follows. First region V(I) corresponds to streamlines that remain at a large polar
radius from the body which is defined in terms of their starting coordinates as

V(I) = {xi(v)| −∞ < x1 +∞; ρ−∞ � Σ}. (2.7)

Here, Σ is a large radius relative to that of the body, but, as will become apparent
later in the argument, Σ must be much smaller than the equivalent quantity Σ̃ that
defines the radius of the asymptotic surface to be used in determining the force. Thus,

aB � Σ � Σ̃. (2.8)

The second region V(II) corresponds to the volume enclosed by the body together with
the remaining streamlines that originate far upstream, but stop at a far-downstream
but finite position (x1 = +X) in the trailing vortex where the vorticity field has
become independent of x1. Thus, V(II) is defined by

V(II) = {xi(v)|−∞ < x1 < +X; ρ−∞ < Σ} ∪ VB. (2.9)

Here, it is a necessary requirement of our analysis that X is very much greater than
Σ but also that both Σ and X are very much smaller than the equivalent quantities
Σ̃ and X̃ defining the asymptotic volume Ṽ and its surface S̃. Thus,

aB � Σ � X � Σ̃ � X̃. (2.10)

Finally, region V(III) is defined by the remainder of the whole of space which
importantly includes that part of the trailing vortex where the vorticity is independent
of x1

V(III) = {xi(v)| +X < x1 < +∞; ρ−∞ < Σ}. (2.11)
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We can now define the asymptotic volume Ṽ, as shown in figure 1. In view of
the particular shape of the asymptotic volume chosen, it should be noted that the
following argument is only strictly valid for a body whose cross-stream section has
an aspect ratio of order one. The cross-stream to axial aspect ratio can necessarily
be much larger because Σ̃ � X̃. Thus, a long slender body is consistent with the
analysis provided that the body’s principal axis is aligned with the undisturbed flow.
The principles of the mathematical argument can be applied to other body shapes
provided the shape of the asymptotic volume is consistent with that of the body and
care is taken when evaluating the conditionally convergent integrals in the limit as the
surface of Ṽ is allowed to tend to infinity. For the purposes of our analysis, therefore,
the hydraulic radius aB(=V1/3

B ) will be used as the characteristic length scale of the
body in recognition of the implicit constraints on its shape, as described above.

In terms of the streamlines xi(v) of the irrotational velocity field vi , then Ṽ is
defined as

Ṽ = {xi(v)| −X̃ < x1 < +X̃; ρ−∞ < Σ̃}. (2.12)

The asymptotic surface S̃ of the volume Ṽ is then defined as the sum of three parts

S̃ = S̃0 + S̃1 + S̃2. (2.13)

Here, S̃1 is the stream surface originating from the far upstream circle ρ−∞ = Σ̃ and
defined by

S̃1 = {xi(v)| −X̃ < x1 < +X̃; ρ−∞ = Σ̃}. (2.14)

S̃0 and S̃2 are the far upstream and downstream disks defined by

S̃0 = {xi(v)|x1 = −X̃; ρ−∞ < Σ̃}, S̃2 = {xi(v)|x1 = +X̃; ρ−∞ < Σ̃}. (2.15)

It is important to note that the normal vector ni to the stream surface S̃1 comprises
two components. First, the normal λi to the circular cylinder ρ = Σ̃ corresponding
to the ambient uniform velocity Uδ1i and, secondly, a component �ni corresponding
to the irrotational disturbance velocity �vi . It is argued in Appendix A that, on S̃1

the position vector can be approximated to second order by

xi(v) ∼ x̃i − d̃i , (2.16a)

where x̃i are the first-order asymptotic streamlines given by

x̃i = x1δ1i + Σ̃λi . (2.16b)

Here, d̃i is the following approximate form for the drift vector which corresponds to
equation (16) of Lighthill

d̃i(v) =

∫ x1

−∞
−�ϕ,i |x̃ dx1 = O

(
a3

BΣ̃−2
)
. (2.17)

It is also argued in Appendix A that

ni = λi + �ni |x̃ where �ni |x̃ = O
(
a3

BΣ̃−3
)
. (2.18)

Here subscript x̃ denotes evaluation of functions on the asymptotic streamline x̃i .
In the course of our argument, we shall derive expressions involving surface integrals

over both the upstream S̃0 and downstream disks S̃2. The differential surface
elements on the upstream ds−∞ and downstream disks ds+∞, however, correspond to
the far upstream and downstream ends of a stream tube of the velocity field vi . Since
the volume flux in the x1-direction is conserved, the fluid being incompressible, then
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we have the relationship

v−∞
1 ds−∞ = v+∞

1 ds+∞. (2.19)

By the definition of vi given by (1.3), however, v−∞
1 = v+∞

1 = U , from which it follows
that the differential surface elements are equal and thus

ds−∞ = ds+∞. (2.20)

This relationship is crucial to the argument since it allows integrations over the
downstream disk S̃2 to be transformed into integrals over the upstream disk S̃0.

3. Darwin’s theorem for an arbitrarily shaped body
Since Darwin’s drift-volume occurs in our final expression, (6.21), for the lift force,

we shall derive in this section an alternative expression in terms of the added mass
coefficient tensor. Following the argument of Darwin (1953, § 8), we first obtain an
identity for his drift-volume (the left hand side of the identity below) by substituting
for the definition of the total drift given by (1.6) to obtain∫ +∞

−∞

∫ +∞

−∞
Di dx−∞

2 dx−∞
3 =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
− U�ϕ,i dt dx−∞

2 dx−∞
3 . (3.1)

Here, the total drift Di is considered to be a function of the far upstream off-axis
coordinates and, therefore, Di = Di(x

−∞
2 , x−∞

3 ). Now note that every fluid particle that
moves from xi(t) → xi(t) + �vi dt in the time interval t → t + dt originated from x−∞

1

where it would have moved from x−∞
1 → x−∞

1 + dx−∞
1 in the corresponding starting

time interval t−∞ → t−∞ + dt . We can, therefore, replace Udt in the right-hand side
of (3.1) by dx−∞

1 to obtain∫ +∞

−∞

∫ +∞

−∞
Di dx−∞

2 dx−∞
3 =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
− �ϕ,i dx−∞

1 dx−∞
2 dx−∞

3 . (3.2)

Here, �ϕ,i is still evaluated at time t at the point xi(t). Furthermore, since the
fluid is incompressible, the fluid volume element dx−∞

1 dx−∞
2 dx−∞

3 which originates at
the starting time t−∞ is deformed into the fluid volume element dv during the time
interval t−∞ → t . Necessarily, the summed volume elements dv comprise the whole
of the volume surrounding the body VB which we denote V∞ − VB . Substituting
the identity dx−∞

1 dx−∞
2 dx−∞

3 = dv into (3.2), we arrive at the equivalent of Darwin’s
equation (8.8), namely∫ +∞

−∞

∫ +∞

−∞
Di dx−∞

2 dx−∞
3 =

∫
V∞−VB

− �ϕ,i dv. (3.3)

We now wish to evaluate the right-hand side of (3.3), but we must first carefully
consider how this should be done in view of the conditional convergence, as discussed
by Darwin, of the multiple integral. As explained in § 1, the need to evaluate the
left-hand side of (3.3) arises naturally in both the derivation of the asymptotic
approximation of the rotational disturbance velocity and also in the evaluation of
the force integral (1.17) on the far downstream disk S̃2 of the asymptotic surface S̃.
Thus, the particular evaluation of Darwin’s theorem for our analysis must parallel that
of the main argument. For our purpose we can, therefore, apply Darwin’s theorem
rigorously in the form of the identity

lim
X̃,Σ̃→+∞

∫
S̃0

Di ds = lim
X̃,Σ̃→+∞

∫
Ṽ−VB

− �ϕ,i dv. (3.4)
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Here, it is necessary to ensure that the ratio Σ̃/X̃ → 0 whilst taking the limit. This
ensures that the limit is much more advanced in the streamwise direction than in the
off-axis direction which is consistent with evaluating the innermost integral of the
right-hand side of (3.1) first, before evaluating the double integral for the drift-volume.

In our argument, we shall employ both the identity (6.4.28) of Batchelor (1967,
p. 407) for the acceleration reaction in terms of the disturbance velocity potential �ϕ

and identity (6.4.29) (Batchelor, p. 408) for the fluid impulse Ii in terms of the added
mass coefficient tensor Cij (denoted αij by Batchelor). When these two identities are
combined the fluid impulse becomes

Ii =

∫
SB

U�ϕni ds = VBUCi1. (3.5)

Note that only the added mass coefficient tensor terms Ci1 appear in the identity
because, in our formulation, the ambient velocity is equal to Uδ1j . Applying the
divergence theorem to the right-hand side of (3.4) and substituting (3.5) we arrive at∫

Ṽ−VB

−�ϕ,i dv = VBCi1 −
∫

S̃
�ϕni ds. (3.6)

We now substitute into (3.6) the asymptotic approximations (3.7) for �ϕ and ni on
S̃1 and the far upstream and downstream disks S̃0 and S̃2. The approximations
on S̃1 are obtained by taking Taylor expansions in the off-axis direction about the
streamlines x̃i of the uniform flow and substituting the bounds given by (2.17) and
(2.18) to give

�ϕ|S̃1
∼ −ck(xkr

−3)|x̃ − �ϕ,k|x̃dk = −ck(xkr
−3)|x̃ + O

(
a6

BΣ̃−2r−3
)
, (3.7a)

ni |S̃1
= λi + O

(
a3

BΣ̃−3
)
, �ϕ|S̃0

= �ϕ|S̃2
= O

(
a3

BX̃−2
)
. (3.7b)

Noting that ∫ +∞

−∞
(r−3)|x̃ dx1 =

∫ +∞

−∞

[
x2

1 + Σ̃2
]−3/2

dx1 = 2Σ̃−2

and also that on S̃1 the differential surface element is given by ds = Σ̃ dx1 dλ we
arrive at∫

Ṽ−VB

− �ϕ,i dv = VBCi1 + Σ̃

∫
S̃1

ck(xkr
−3)|x̃λi dx1 dλ + O

(
a6

BΣ̃−3
)

+ O
(
a3

BΣ̃2/X̃
2)

.

(3.8)

Now, substitute (xk)|x̃ = x1δ1k + Σ̃ λk and note that for integration with respect to λ
over the interval 0 < λ < 2π then odd functions of λ can be dropped so that λir

−3 ≡ 0
and λiλkr

−3 ≡ δik �=1r
−3/2. It follows that as Σ̃ and X̃ → +∞,

∫
S̃1

ck(xkr
−3)|x̃λi ds → Σ̃2

∫ +∞

−∞

∫ 2π

0

ck �=1(r
−3)|x̃λkλi dλ dx1 = 2πci �=1. (3.9)

Combining (3.8) and (3.9) with the relationship between ck and the added mass
coefficient tensor Cij given by (6.4.18) of Batchelor (1967, p. 403), namely ci �=1 =
−VB/(4π)Ci �=11 (note the difference in sign because in Batchelor’s notation the body
is moving and the fluid stationary) we find∫

Ṽ−VB

− �ϕ,i dv → VBCi1 + 2πci �=1 = VBCi1 − VB(0, C21, C31)/2. (3.10)
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Thus, we finally obtain the required identity for the drift-volume

lim
X̃, Σ̃→+∞

∫
S̃0

Di ds = lim
X̃, Σ̃→+∞

∫
Ṽ−VB

− �ϕ,i dv = VB

(
C11,

1
2
C21,

1
2
C31

)
. (3.11)

Identity (3.11) is seen to agree with equation (3.1) of Darwin and equation (14) of
Lighthill (1956) in the case of a sphere when VB = 4π/3a3

B , C11 = CM = 1
2

and
C21 = C31 = 0.

4. Asymptotic approximation of the rotational disturbance velocity �wBS
i on

S̃1 and S̃2

4.1. The asymptotic split of �wBS
i into �w©1

i and �w©2
i

As explained in § 2, we wish to approximate �wBS
i essentially by splitting the

infinite domain of integration of the Biot-Savart integral of �ωi into the three
subdomains V(I), V(II) and V(III). The conditional convergence of the Biot-Savart
integral, however, prevents us from proceeding directly on this basis. We therefore
adopt the procedure described in Lighthill (1956, p. 37) and separate out from �ωi

its asymptotic value �ω̃i on streamlines that remain far from the body, given by
equation (18) of Lighthill as

�ω̃i(v) =
−Ω∂d̃i(v)

∂x−∞
3

=
Ω∂

∂x−∞
3

[∫ x1

−∞
�ϕ,i |x̃ dx1

]
= Ω

∫ x1

−∞
�ϕ,i3|x̃ dx1. (4.1)

Note that Lighthill points out in a footnote to his p. 37 that if the argument is
not progressed rigorously in this way then a different and incorrect result is obtained.
Lighthill’s procedure, as developed rigorously later in the section, ensures that the
difference between �ωi and its asymptotic value �ω̃i decays very rapidly as ρ → +∞,
namely like �ωi − �ω̃i = O(Ωa5

Bρ−5). Thus, the radial contribution of this error
to the Biot-Savart integrals for �wi(II) and �wi(III) is, roughly speaking, of order
O(Ωa5

BΣ−4) and, therefore, negligible in the limit as Σ̃ → +∞. If the argument is not
progressed in this way, there are finite contributions in the limit as Σ̃ and X̃ → +∞
that arise from the interface between V(I) and V(II) + V(III) whose rigorous treatment
would substantially complicate the analysis and whose non-rigorous treatment, as
indicated by Lighthill, would lead to an incorrect result. For the same reason, it is
important to split the domain of the Biot-Savart integral in such a way that it is
consistent with our limiting procedure, namely aB/Σ → 0, Σ/X → 0, X/Σ̃ → 0,
Σ̃/X̃ → 0 as Σ̃ and X̃ → +∞. This in the reason why we have defined the surfaces
S̃ and S to be nested, as shown in figure 1, and also the volumes V(I), V(II) and
V(III) as having interfaces that are coincident S1 and S2. To rigorously define the
separation of �ω̃i from �ωi we shall follow Lighthill by defining �ωi to be split into
two components �ω©1

i and �ω©2
i where

�ωi = �ω
©1
i + �ω

©2
i . (4.2)

The function �ω©1
i is then defined as an analytical continuation of �ω̃i from large

cylindrical polar radius, ρ−∞ > ρB say, into the whole of space but in such a way
that �ω©1

i is identically zero in an inner cylinder, ρ−∞ < ρA say, which is still at
a large distance from the body. The position of the inner and outer cylinder are
arbitrary, but the argument is much simplified if we choose them to be within an
infinitesimally small distance from the stream-cylinder ρ−∞ = Σ , which we have
chosen as the interface between V(I) and V(II) + V(III). Thus, we can now proceed
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rigorously provided that we evaluate �ωi in V(I) by considering the evaluation of
�ω©1

i and �ω©2
i in V(I) separately and employ �ω©2

i instead of �ωi in V(II) + V(III)

(because �ω©1
i = 0). The key difference is that �ω©2

i decays very rapidly as ρ → +∞
in V(I). The rapidity of this decay can be estimated by considering the next highest
order approximation to �ωi(v) on the distant streamlines x̃j employing the bound

d̃l ∼ O(a3
Bρ−2), derived in Appendix A, to obtain

�ϕ,i ∼ �ϕ,i |x̃ + �ϕ,il �=1|x̃ (xl �=1 − x̃l �=1) ∼ �ϕ,i |x̃ − �ϕ,il �=1|x̃ d̃l �=1

∼ �ϕ,i |x̃ + O
(
a6

Bρ−2r−4
)
. (4.3)

When (4.3) is substituted into identity (4.1) for the asymptotic form of the disturbance
vorticity �ωi(v) and noting that∫ +∞

x1

(r−4)|x̃ dx1 <

∫ +∞

−∞
(r−4)|x̃ dx1 =

∫ +∞

−∞

[
x2

1 + ρ2
]−2

dx1 = O(ρ−3)

as ρ → +∞, we find

�ω
©2
i ∼ �ωi − �ω̃i = O

(
Ωa5

Bρ−5
)
. (4.4)

Having now defined the split in the disturbance vorticity �ωi into �ω©1
i and �ω©2

i , the
corresponding split in �wBS

i is defined by the Biot-Savart integrals of �ω©1
i and �ω©2

i

respectively, as

�wBS
i = �w

©1
i + �w

©2
i . (4.5)

4.2. The asymptotic approximation of �wi (I) as ρ → +∞ and |x1| → +∞
First, we consider the asymptotic approximation of �wi(I) as ρ → +∞. As explained in
§ 4.1, to evaluate �wi (I) we must evaluate �w©1

i (I) and �w©2
i (I) separately. By definition,

�ω©1
i is equal to �ω̃i in V(I), where �ω̃i as defined in (4.1), denotes �ωi evaluated on

the streamlines that remain far from the body. By the definition of the Biot-Savart
integral, the curl of �w©1

i is identically equal to �ω̃i in the region V(I). Also by
applying Lighthill’s argument for his equations (16)–(19) we find that the curl of �w̃i

is equal to �ω̃i where

�w̃i = Ω εi3kd̃k = −Ω(d̃2, −d̃1, 0). (4.6)

Equation (4.6) is seen to be identically equal to (19) of Lighthill (1956) by noting
that d̃1 = −�ϕ and, in his notation, Ω = −A. It follows, therefore, that �w̃i is equal
to the highest-order term in the asymptotic approximation of �w©1

i (I) as ρ → +∞. It
remains, therefore, to approximate �w©2

i (I).
Consider the asymptotic behaviour of �ωi(v) in the far downstream limit as

x1 → +∞. First, note that the streamlines xi(v) tend towards the straight lines

xi(v) → x̃+
i = x1 δ1i + x+∞

i �=1 . (4.7)

Denoting evaluation on the far downstream streamlines x̃+ by |x̃+ we can write

�ω
©2
i |x̃+ = �ωi |x̃+ − �ω̃i |x̃+ =

(
�ωi |x̃+ − �ω+∞

i |x̃+

)
+

(
�ω+∞

i |x̃+ − �ω̃i |x̃+

)
. (4.8a)

It now follows, by employing the argument of Appendix C to both terms on the right-
hand side of (4.8a), that as x1 → +∞

�ω
©2
i |x̃+ = �ωi |x̃+ − �ω̃i |x̃+ = O

(
Ωa3

B |x1|−3
)
. (4.8b)



124 C. A. Catlin

A similar argument can be used to show that on the far upstream streamlines x̃ then,
as x1 → −∞

∆ω
©2
i |x̃+ = �ωi = O

(
Ωa3

B |x1|−3
)
. (4.8c)

Note that both bounds in (4.8b) and (4.8c) are uniform in ρ. Now consider the
behaviour of �ωi(v) as ρ → +∞. Combining the three bounds (4.4), (4.8b) and (4.8c)
for the behaviours of �ωi both as |x1| → +∞ and ρ → +∞ we obtain

�ω
©2
i = �ωi − �ω̃i = O

(
Ωa3

B |x1|−3
)
, (4.9a)

and

�ω
©2
i = �ωi − �ω̃i = O

(
Ωa5

Bρ−5
)
. (4.9b)

Note that the bound in (4.9b) is uniform in x1. We can now substitute the bounds
(4.9) for �ω©2

i into the Biot-Savart integral for �w©2
i (I). To do this, we split the x1

integration range into two parts. In the first region |x1| > X then �ω©2
i is of order

O(Ωa3
B |x1|−3) and in the second region |x1| < X then �ωi

©2 is of order O(Ωa5
Bρ−5).

Substituting these two bounds into the Biot-Savart integral for �w©2
i (I) and integrating

the bounds with respect to ρ dρ over the interval Σ < ρ < +∞ we find

�w
©2
i (I) = O(aBΩΣ2/X2) + O

(
Ωa3

BΣ−3X
)
. (4.10)

Note that both of the bounds in (4.10) tend to zero as Σ and X → +∞ since
we are free to choose the ratio aB/Σ = (Σ/X)β provided β > 0. It follows that
provided β > 1

2
then Σ−3X = a−2

B (aB/Σ)2X/Σ = a−2
B (Σ/X)2β−1 and the term of

order O(Ωa3
BΣ−3X) = O(aBΩΣ2β−1/X2β−1) → 0 as Σ and X → +∞. Thus, if we

choose 1
2

< β < 3
2

we recover the result given by (19) of Lighthill (1956) as ρ → +∞,
namely

�wi (I) = �w
©1
i (I) + �w

©2
i (I) = �w̃i + O(aBΩΣ2β−1/X2β−1) ∼ Ωεi3k d̃k. (4.11a)

We can now approach the asymptotic approximation of �wi (I) as |x1| → +∞ in an
entirely analogous way to that above to show also that as |x1| → +∞

�wi (I) = �w
©1
i (I) + �w

©2
i (I) = �w̃i + O(aBΩΣ2β−1/X2β−1) ∼ Ω εi3k d̃k. (4.11b)

4.3. The asymptotic approximation of �wi(II) as r → +∞
The following analysis applies in the asymptotic limit as r → +∞ and, therefore, the
results are separately valid in the two limiting cases studied later, namely ρ → +∞
and |x1| → +∞. The first step in approximating the Biot-Savart integral for �wi (II),
or equivalently �w©2

i (II), is to truncate the integral over the infinite volume V(II) to
one over a finite volume V. Here, as shown in figure 1, V and S(=S0 + S1 + S2)
are defined identically to Ṽ and S̃ in equations (2.12)–(2.15) except that Σ and X

are used instead of Σ̃ and X̃. Employing the bound (4.9) for �ω©2
i as |x1| → +∞ we

can, therefore, approximate the Biot-Savart integral for �w©2
i(II) by (4.12) where here

we have purposely chosen to write the partial derivative of ξ with respect to xk and
not the integration variable x ′

k , where ξ 2 = (xl − x ′
l)(xl − x ′

l)

�wi(II) =
−1

4π
εijk

[∫
V

∆ω′©2
j

∂

∂xk

(ξ−1)dv′
]

+ O(aBΩΣ2/X2). (4.12)

Now since the volume V is bounded by ρ−∞ < Σ and |x1| < X, then for large radius
r we can approximate ξ ∼ r and take the partial derivative outside the integral to
obtain the equivalent identity to that of (20) in Lighthill (1956), once corrected in
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sign, namely

�wi(II) ∼ − 1

4π
εijk

[∫
V

�ω′©2
j dv′

]
(r−1),k. (4.13)

Note the error in the sign of (20) of Lighthill (1956) is explained in Lighthill (1957).
We now follow the argument used by Lighthill (1956) to obtain his equation (21).
Substitute the identity (x ′

j�ω©2
l ),l = �ω′©2

j into (4.13) and apply the divergence theorem
to obtain

∆wi(II) ∼ −1

4π
εijk

[∫
S0+S1+S2

x ′
j�ω′©2

l n′
l ds′

]
(r−1),k. (4.14)

Note on S0 that x ′
j |S0

= −Xδ1j , n′
l |S0

= −δ1l and �ω′©2
1 |S0

∼ O(Ωa3
B |x ′

1|−3); on

S1 that x ′
j |S1

∼ x ′
1δ1j + Σλ′

j , n′
l |S1

∼ λ′
l and �ω©2

l |S1
= O(Ωa5

BΣ−5); on S2 that

x ′
j |S2

∼ Xδ1j + x ′+∞
j �=1, n′

l |S2
= δ1l and �ω′©2

1 |S2
∼ −Ω ∂d ′

1/∂x ′−∞
3 + O(Ωa3

B |x ′
1|−3). The

only finite contribution to (4.14), therefore, comes from the far downstream disk S2.
The disk S0 contributes an error of O(a3

BΩΣ2/X2) to the inner integral of (4.14)
which becomes negligible as Σ and X → +∞. When x ′

j�ω′©2
l is integrated over S1

it yields an error O(aB
5ΩΣ−4X2) to the inner integral of (4.14). Using the same

reasoning as used to derive (4.11), we are free to choose the ratio aB/Σ = (Σ/X)β

whereby, provided β > 1, then Σ−4X2 = a−2
B (aB/Σ)2(X/Σ)2 = a−2

B (Σ/X)2β−2 and
the term of order O(a5

BΩ Σ−4X2) = O(aB
3Ω Σ2β−2/X2β−2) → 0 as Σ and X → +∞.

Thus, as Σ and X → +∞
∫

S0+S1+S2

x ′
j�ω′©2

l n′
l ds′ ∼ −Ω

∫
S2

(
∂ d ′

1

∂x ′−∞
3

x ′
j

)∣∣∣∣
S2

ds′+∞. (4.15)

Now changing the integration variables from ds′+∞ to ds′−∞ using (2.20), writing
ds′−∞ = dx

′−∞
2 dx

′−∞
3 and x ′

j |S2
∼ Xδ1j + x ′+∞

j �=1 we obtain

∫
S0+S1+S2

x ′
j �ω′©2

l n′
l ds′ ∼ −Ωδ1jX

∫
S0

∂

∂x ′−∞
3

(d ′
1|S2

) dx ′
2

−∞
dx ′

3
−∞

− Ω

∫
S0

(
∂d ′

1

∂x ′−∞
3

x ′
j �=1

)∣∣∣∣
S2

ds′−∞
. (4.16)

The first integral on the right-hand side of (4.16) can be integrated once with respect

to x
′−∞
3 . Using the identity d ′

1|C2
= d̃

′
1|C2

= −�ϕ′|C2
= O(a3

BX−2), where here we
have denoted evaluation on the perimeter boundary contour of S2 by |C2

, then
X

∫
S0

∂/∂x ′−∞
3 (d ′

1|S2
) dx

′−∞
2 dx

′−∞
3 = O(a3

BΣ/X). Finally, letting Σ and X → +∞ then

the drift d ′
1|S2

evaluated on S2, tends towards the total drift D′
1 and, therefore,

(∂d ′
1/∂x ′−∞

3 x ′
j �=1)|S2

→ ∂D ′
1/∂x ′−∞

3 x
′+∞
j �=1 and we obtain the limiting identity

∫
S0+S1+S2

x ′
j�ω

′©2
l n′

l ds′ → −Ω

∫
S0

∂D ′
1

∂x ′−∞
3

x
′+∞
j �=1 ds′′−∞

. (4.17)

Substituting (4.17) into (4.14) for �wi (II) we obtain

�wi (II) ∼ 1

4π
Ωεijk

[∫
S0

∂D ′
1

∂x ′−∞
3

x
′+∞
j �=1 ds′−∞

]
(r−1),k. (4.18)



126 C. A. Catlin

Since (r−1),k = −r−3xk = −x1r
−3δ1k − ρr−3λk (4.18) can alternatively be written

�wi (II) ∼ −1

4π
Ω(εij1x1r

−3 + δ1iε1jkρr−3λk)

∫
S0

∂D ′
1

∂x ′−∞
3

x
′+∞
j �=1 ds

′−∞. (4.19)

The result (4.18) is our generalization of the corrected equation (22) of Lighthill
(1956). The identity between our (4.18) and the corrected (22) of Lighthill in his case
of a sphere will be proved in the discussion of § 7.

4.4. The asymptotic approximation of �wi (III) as ρ → +∞ and |x1| → +∞
For the limiting case ρ → +∞, we shall approximate the Biot-Savart integral for
�wi(III), or equivalently �w©2

i (III) since �ωi
©1 = 0 in V(III). Noting that by the definition

of V(III) then x ′
1 > +X, the disturbance vorticity �ω

′©2
i is asymptotically independent

of x ′
1 and only a function of the far-downstream off-axis coordinates x

′+∞
j �=1 . We can,

employing the bound derived in Appendix C, substitute �ω
′©2
i = ∆ω

′+∞
j +O(Ωa3

Bx ′−3
1 )

and take the term �ω
′+∞
j outside the integral with respect to x ′

1 to obtain

�wi (III) =
−1

4π
εijk

∫
S2

�ω
′+∞
j

∫ +∞

X

∂

∂xk

(ξ−1) dx ′
1 ds′+∞

+ O(aBΩΣ2/X2). (4.20)

Note that we have changed the sign of the integral by replacing the partial derivative
with respect to the integration variable ∂/∂x ′

k by the partial derivative with respect
to the independent variable ∂/∂xk . Since our interest in the value of �wi (III) lies at a
large radial distance ρ (
X 
 Σ) we can substitute the asymptotic approximation
Bk (=B1δ1k + Bk �=1) for

∫ +∞
X

(∂/∂xk)(ξ
−1) dx ′

1 derived in Appendix B, whilst at the

same time change the integration variables ds′+∞ on disk S2 to ds′−∞ on disk S0.
Substituting �ω′

j
+∞ for its explicit expression in terms of the total drift given by

(1.16), then �ω
′+∞
j = −Ω∂D ′

j /∂x
′−∞
3 and we obtain

�wi (III) ∼ 1

4π
Ω

∫
S0

{
εij1

∂D ′
j �=1

∂x
′−∞
3

B1 + εijk �=1

∂D ′
j

∂x
′−∞
3

Bk �=1

}
ds

′−∞. (4.21)

Before substituting the expression for Bk in Appendix B, note that any terms in Bk

that are independent of the integration variable x
′−∞
j �=1 can be neglected. This is because

these terms can be integrated with respect to x
′−∞
3 and since D ′

j = O(a3
BΣ−2) on the

boundary contour C2 of disk S2 then they will only make an order O(a2
BΩΣ−1)

contribution to �wi (III). Now substituting (B 4) for B1 and (B 5c) for Bk �=1 we obtain

�wi (III) ∼ 1

4π
Ωεij1(ρr−3λl)

∫
S0

∂D ′
j �=1

∂x
′−∞
3

x
′+∞
l �=1 ds

′−∞

+
1

4π
Ωεijk �=1(ρ

−2[1 + x1r
−1]{δkl �=1 − 2λkλl} − x1 r−3λkλl)

∫
S0

∂D ′
j

∂x
′−∞
3

x
′+∞
l �=1 ds

′−∞ (4.22)

The identity (4.22) for �wi (III) is not directly comparable with Lighthill, but can
be shown to agree with his equation for �wi(II) + �wi(III) given by (85) in Lighthill
(1957). The proof of the equality between Lighthill’s (85) for a spherical body and
that derived here in (4.22) will be addressed in the discussion of § 7.

For the limiting case |x1| → +∞, then ρ ′ � ρ � |x1| and we note from the
identities (B 1) and (B 2b) of Appendix B the following uniform bounds in ρ, where
η2 = (xl �=1 − x ′

l �=1)(xl �=1 − x ′
l �=1).

Bk=1 = O(|x1|−1), (4.23a)
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Bk �=1 = 2(x ′
k �=1 − xk �=1)η

−2 + O(ρ|x1|−2) = −2
∂

∂xk

(log η) + O(ρ|x1|2). (4.23b)

Thus, substituting the identity �ω+∞
i = −Ω∂Di/∂x−∞

3 from (1.16) and the bounds
(4.23) into (4.20) for �wi (III) we find as |x1| → +∞ that

�wi(III) =
−1

2π
Ωεijk �=1

∫
S2

∂D ′
j

∂x
′−∞
3

∂

∂xk

(log η)|S̃2
ds

′−∞

+ O(ΩΣ3/X2) + O(aBΩΣ2/X2). (4.24a)

Finally, substituting aB/Σ = (Σ/X)β , we find that provided we choose 0 < β < 2
(which is possible in addition to satisfying the constraints 3

2
> β > 1

2
and β > 1 in

§§ 4.2 and 4.3, respectively) then as Σ and X → +∞ we obtain the two-dimensional
Biot-Savart integral, namely,

�wi(III) =
−1

2π
Ωεijk �=1

∫
S2

∂D ′
j

∂x
′−∞
3

∂

∂xk

(log η)|S̃2
ds

′+∞ + O(aBΩΣ2−β/X2−β). (4.24b)

5. The lift force expressed as an integral of �wi over S̃1 and the disks S̃0

and S̃2

5.1. The lift force expressed as an integral of wi over S̃
As explained in the § 1, we shall proceed in the same way as § 6 of Auton (1987) and
employ his identity (6.1) for the force on the body expressed as an integral over S̃.
Note that in the proof of his (6.1) the surface S̃ can be chosen to have any shape,
provided it encloses the body. The particular shape of the asymptotic surface S̃ used
in our argument is defined in § 2 as comprising the far upstream disk S̃0, the far
downstream disk S̃2 and the stream surface S̃1 of the velocity field vi . Thus, we can
write Auton’s equation (6.1) in the following form, (5.1), where we have introduced
the notation |x(v) to make explicit the evaluation of functions on the streamlines of vi

and not ui .

1

ρ0

fi = lim
X̃,Σ̃→+∞

∫
S̃

{
−1

ρ0

p|x(v)ni − (uiuj )|x(v)nj

}
ds. (5.1)

For brevity, we shall omit the integral signs in the following argument and use the
equivalence notation (≡) to denote equality under the integral. Starting with the
right-hand term in the integrand of (5.1), we express ui as the sum of its irrotational
vi and rotational wi components as defined in (1.9). Noting that wi = O(aBΩ), we
obtain

(uiuj )|x(v) ≡ (vivj )|x(v) + (viwj + vjwi)|x(v) + O
(
a2

BΩ2
)
. (5.2)

To approximate p|x(v) we employ the Bernoulli identity on the streamlines of ui that
originate from the far upstream starting positions x−∞

i to obtain

−1

ρ0

p|x(u) = 1
2

(
ujuj − u−∞

j u−∞
j

)∣∣
x(u)

= 1
2

(
vjvj − v−∞

j v−∞
j

)∣∣
x(u)

+
(
vjwj − v−∞

j w−∞
j

)
|x(u) + O

(
aB

2Ω2
)
. (5.3)

Here, the pressure p−∞ at the far upstream position has been taken to be identically
zero since its inclusion does not change the value of (5.1). To approximate p|x(v), we
must relate the pressure at x1 on the streamline xi(u) to that at x1 on the neighbouring
streamline xi(v). To do this, we take a Taylor expansion about the streamline xi(v)
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in the x2- and x3-directions from which it follows that the two terms in (5.3) can be
approximated, respectively, by(

vjwj − v−∞
j w−∞

j

)∣∣
x(u)

=
(
vjwj − v−∞

j w−∞
j

)∣∣
x(v)

+ O
(
aB

2Ω2
)
, (5.4a)

1
2

(
vjvj −v−∞

j v−∞
j

)∣∣
x(u)

=1
2

(
vjvj −v−∞

j v−∞
j

)∣∣
x(v)

+(vjvj,k �=1)|x(v)[xk �=1(u) − xk �=1(v)]. (5.4b)

The streamline displacement xk �=1(u) − xk �=1(v) is normal to the direction of uniform
flow and is given to order O(a3

BΩ2/U 2) by the integral of the rotational disturbance
velocity components �wk �=1 along the streamlines xi(v). Importantly, therefore,
xk �=1(u) − xk �=1(v) = O(a2

BΩ/U ). Note that the streamline displacement is normal
to the ambient velocity Uk = (U − Ωx2)δ1k . Using a similar argument to that used
in Appendix A to derive the bound dk(v) = O(a3

BΣ̃−2) for the drift vector dk

corresponding to the streamline displacement caused by �vk , it is possible to argue
that as Σ̃ → +∞

xk �=1(u) − xk �=1(v) = O
(
aB

3ΩΣ̃−1/U
)
. (5.5)

Combining the bound (5.5) with (vjvj,k �=1)|x(v) = O(U 2a3
Br−4) we obtain from (5.4b)

that
1
2

(
vjvj − v−∞

j v−∞
j

)∣∣
x(u)

= 1
2

(
vjvj − v−∞

j v−∞
j

)∣∣
x(v)

+ O
(
aB

6UΩΣ̃−1r−4
)
. (5.6)

The error term O(a6
BUΩΣ̃−1r−4) in (5.6), when integrated over the upstream and

downstream disks S̃0 and S̃2, contributes O(a6
BUΩΣ̃/X̃

4
) to 1/ρ0fi and, when

integrated over the stream surface S̃1, contributes O(a6
BUΩΣ̃−3). Combining (5.3),

(5.4) and (5.6), we find that, in the limit as Σ̃ and X̃ → +∞, p|x(u) can be approximated

over the whole of S̃ by

−1

ρ0

p|x(u) ≡ 1
2

(
vjvj − v−∞

j v−∞
j

)∣∣
x(v)

+
(
vjwj − v−∞

j w−∞
j

)∣∣
x(v)

. (5.7)

It remains to approximate the pressure p|x(v) on the streamlines xi(v). Again we
take the Taylor expansion about xi(v) to obtain the leading – order approximation
−1/ρ0p|x(u) = −1/ρ0p|x(v) −1/ρ0p,k �=1|x(v)[xk �=1(u)−xk �=1(v)]. Substituting for −1/ρ0p,k

from the momentum equation −1/ρ0p,k = uluk,l and substituting the bound (5.5) for
the streamline displacement we find that

−1

ρ0

p|x(u) =
−1

ρ0

p|x(v) + (uluk,l)|x(v)[xk �=1(u) − xk �=1(v)]

= − 1

ρ0

p|x(v) + (vl vk,l)|x(v)[xk �=1(u) − xk �=1(v)] + O
(
a2

BΩ2
)
. (5.8)

Finally, substituting the bounds (vlvk,l)|x(v) = O(a3
BU 2r−4) and again xk �=1(u) −

xk �=1(v) = O(a3
BΩΣ̃−1/U ) while letting Σ̃ and X → +∞ we determine the following

approximation over the whole of S̃:

−1

ρ0

p|x(u) ≡ − 1

ρ0

p|x(v) + O
(
aB

2Ω2
)
. (5.9)

We can now combine the approximations (5.2), (5.7) and (5.9) to give the following
equivalence for the integrand −(1/ρ0)p|x(v)ni − (uiuj )|x(v)nj of (5.1) over the whole of

S̃:

−1

ρ0

p|x(v)ni − (uiuj )|x(v)nj ≡
{

1
2

(
vjvj − v−∞

j v−∞
j

)∣∣
x(v)

ni − (vivj )|x(v)nj

}
+

{(
vjwj − v−∞

j w−∞
j

)∣∣
x(v)

ni − (viwj + vjwi)|x(v)nj

}
+ O

(
a2

BΩ2
)
. (5.10)
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In the absence of any vorticity in the flow, the second curly bracketed term on the
right-hand side of (5.10) would vanish and the remaining expression would then give
the integrand of the force integral (5.1) for the case of a body in the irrotational
velocity field vi . This case then corresponds to that discussed in Batchelor (1967,
p. 405) in which he argues that the force on the body is identically zero. It follows
that the integral of the first curly bracketed term on the right-hand side of (5.10)
must equal zero, whereupon we arrive at the equivalence

−1

ρ0

p|x(v)ni − (uiuj )|x(v)nj ≡
{(

vjwj − v−∞
j w−∞

j

)∣∣
x(v)

ni

− (viwj + vjwi)|x(v)nj

}
+ O

(
a2

BΩ2
)
. (5.11)

Finally, substituting (5.11) into the force integral (5.1), we obtain the identity for the
force on the body to order O(a4

BΩ2)

1

ρ0

fi = lim
X̃,Σ̃→+∞

∫
S̃

{(
vjwj − v−∞

j w−∞
j

)
ni − (viwj + vjwi)nj

}
ds. (5.12)

Here, the integrand is implicitly taken to be evaluated on the streamlines xi(v). Auton
(1987) does not provide an explicit identity with which to compare this result, but the
reader will be able to identify a number of the steps used in the argument above in
Auton’s discussion at the beginning of his § 6.

5.2. The contribution to the force integral from �wi on the stream surface S̃1

For the sake of brevity we shall omit the integrals over S̃1 in the following and use
the equivalence notation (≡) to denote equality under the integral. We shall also drop
the |x(v) subscript since it is now implicit that we are evaluating functions on the

stream surface S̃1 and in particular, therefore, vjnj |S̃1
= 0 to give{

−1

ρ0

pni − uiujnj

}
≡

(
vjwj − v−∞

j w−∞
j

)
ni − (viwj )nj . (5.13)

Following the approach in § 6 of Auton (1987), we first write the terms in (5.13) as
perturbations about their values at the far upstream starting positions thus

viwj =
(
vi − v−∞

i

)(
wj − w−∞

j

)
+ v−∞

i

(
wj − w−∞

j

)
+

(
vi − v−∞

i

)
w−∞

j + v−∞
i w−∞

j . (5.14)

Note the following relationships which follow from (1.9), (2.16) and (2.17)

v−∞
i = Uδ1i , w−∞

j = −Ωx−∞
2 δ1j , vi − v−∞

i = �vi, (5.15a)

wj − w−∞
j = −Ω

(
x2 − x−∞

2

)
δ1j + �wj = Ωd̃2δ1j + �wj . (5.15b)

Substituting (5.15) into (5.14) we find(
vjwj − v−∞

j w−∞
j

)
= Ωd̃2�v1 +�vj�wj +UΩd̃2 +U�w1 − Ωx−∞

2 �v1, (5.16a)

(viwj )nj =
(
−UΩx−∞

2 δ1i + UΩd̃2δ1i−Ωx−∞
2 �vi + Ωd̃2�vi

)
n1

+ Uδ1i�wjnj + �vi�wjnj . (5.16b)

At this point, we must remind the reader, as shown in Appendix A, that nj = λj +�nj ,
and therefore, n1 = �n1. The reader should note that Auton, in his § 6 for
the case of a spherical body, makes no reference to the contribution from the
perturbation �nj in the normal vector. Its omission, however, makes no difference
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to Auton’s final result. Its inclusion for an arbitrarily shaped body, on the other
hand, is essential because it results in terms that have a non-zero contribution to
the force integral. Moreover, because of the bounds �vj = O(Ua3

Br−3), �wj =

O(a3
BΩΣ̃−2), d̃i = O(a3

BΣ̃−2) and �ni = O(a3
BΣ̃−3), we can drop the products

�vj�wj, d̃2�vi, �w1�ni, �wj�nj , d̃2�ni, d̃2�vj , x
−∞
2 �v1�ni and x−∞

2 �vi�n1 that

arise in (5.16) because they make a negligible contribution to the integral over S̃1.
Note that the term d̃2�ni is of order O(a6

BΣ̃−5) and �w1�ni and �wj∆nj are of

order O(a6
BΩΣ̃−5) and, therefore, contribute O(a6

BUΩΣ̃−4X̃) to the integral which
can be shown to be negligible in the limit as Σ̃ and X̃ → +∞ using a similar argument
to that used for (4.10)–(4.11). Again noting that nj = λj + �nj , and n1 = �n1, we
find {

−1

ρ0

pni − uiujnj

}∣∣∣∣
S̃1

≡ U (�w1λi − ∆wjλj δ1i) +
(
UΩd̃2 − Ωx−∞

2 �v1

)
λi

−
(
UΩd̃2δ1i − Ωx−∞

2 �vi − UΩx−∞
2 δ1i

)
�n1. (5.17)

We shall now obtain an alternative expression for �n1 by analysing the asymptotic
approximation to the exact identity vjnj |S1

= 0. Approximating the terms about the
asymptotic streamlines x̃i and neglecting the term �vj�nj , we find

vjnj |S̃1
= (Uδ1j + �vj |x̃)(λj + �nj |x̃) ∼ U�n1|x̃ + λj�vj ∼ 0. (5.18)

Thus, from (5.18) U�n1 = −λj�vj and further x−∞
2 ∼ Σ̃λ2 which when substituted

into (5.17) gives{
−1

ρ0

pni − uiujnj

}∣∣∣∣
S̃1

≡ U (�w1λi − �wjλj δ1i)

+ UΩd̃2λi − ΩΣ̃(�v1λ2λi + �vj �=1λ2λj δ1i). (5.19)

Substituting x̃i = x1δ1i + Σ̃λi into the asymptotic approximation (2.4b) for �vj , we
find the following asymptotic forms for �v1 and �vj �=1:

�v1 ∼ −Uc1

(
r−3 − 3r−5x2

1

)
+ Ucl �=1(3r−5x1Σ̃λl), (5.20a)

�vj �=1 ∼ Uc1(3r−5x1Σ̃λj ) − Ucl �=1(δlj �=1r
−3 − 3r−5Σ̃2λjλl). (5.20b)

The approximations (5.20) can now be substituted into (5.19), noting that λjλj = 1,
dropping odd powers of λj which will integrate to zero on the interval 0 < λ < 2π
and dropping odd functions of λ then λ2λj ≡ δ2j /2 to give{

−1

ρ0

pni − uiujnj

}∣∣∣∣
S̃1

≡ U (�w1λi − �wjλj δ1i) + UΩd̃2λi

− 1
2
UΩΣ̃

[
−c1

(
r−3 − 3r−5x2

1

)
δ2i − cl �=1(δlj �=1r

−3δ2j − 3r−5Σ̃2δ2l)δ1i

]
. (5.21)

The function (r−3 − 3r−5x2
1 ) = d/dx1(x1r

−3) is a perfect derivative of x1 which when
integrated with respect to x1 will result in terms of the order of O(X̃−2) at each end of
S̃1. The corresponding term in (5.21) will contribute terms of order O(a3

BUΩΣ̃2/X̃2)
to the integral over S̃1 and can, therefore, be neglected to give{

− 1

ρ0

pni − uiujnj

}∣∣∣∣
S̃1

≡ U (�w1λi − �wjλj δ1i)

+UΩd̃2λi + 1
2
UΩΣ̃[c2(r

−3 − 3r−5Σ̃2)δ1i]. (5.22)
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The identity (5.22) can now be compared directly with (6.8) of Auton (1987). Note that
his (6.8) refers to his integral (6.1) which has the opposite sign to the x2–component
of the force. In Auton’s case of a sphere of radius a, as shown in Batchelor (1967,
p. 452), cl = −a3δ1l/2 and c2 = c3 = 0. From (5.20b), �v2|x̃ = Uc1(3r−5x1Σ̃λ2) =
−Uc1Σ̃λ2 d/dx1(r

−3) and, therefore, d̃2 = Uc1Σ̃λ2r
−3 which vanishes identically when

integrated over 0 < λ < 2π. Thus, our expression (5.22) gives for the x2–component
of the integrand of our force integral the identity{

−1

ρ0

pn2 − u2ujnj

}∣∣∣∣
S̃1

≡ U�w1λ2. (5.23)

Equation (5.23) agrees exactly with (6.8) of Auton, allowing for his difference in sign
and that our force integral is divided through by the density.

5.3. The contribution to the force integral from �wi on the disks S̃0 and S̃2

We shall first evaluate the integrand of (5.12) on the far upstream disk S̃0 where
from (1.9) vj |S̃0

∼ v−∞
j = Uδ1i , wj |S̃0

∼ w−∞
j = −Ωx−∞

2 δ1j and nj |S̃0
= −δ1j to give{

−1

ρ0

pni − uiujnj

}∣∣
S̃0

≡ −
{(

v−∞
i w−∞

j + v−∞
j w−∞

i

)
nj

}
≡ −2UΩx−∞

2 δ1i . (5.24)

On the far downstream disk, we again have vj |S̃0
∼ v+∞

j = Uδ1j , but the normal
vector changes sign, nj |S̃2

= +δ1j , and there is a finite contribution from the rotational

disturbance velocity in the trailing vortex, namely wj |S̃2
∼ w+∞

j = −Ωx+∞
2 δ1j +

�w+∞
j = −Ωx−∞

2 δ1j + ΩD2δ1j + �w+∞
j to give{

−1

ρ0

pni − uiujnj

}∣∣∣∣
S̃2

≡
{(

v+∞
j w+∞

j − v−∞
j w−∞

j

)
ni −

(
v+∞

i w+∞
j + v+∞

j w+∞
i

)
nj

}

≡ −U�w+∞
i − UΩD2δ1i + 2UΩx−∞

2 δ1i . (5.25)

Combining the contributions (5.24) and (5.25) from the two disks we find that the
only contribution to the force integral arises from the rotational disturbance velocity
in the trailing vortex thus{

−1

ρ0

pni − uiujnj

}∣∣∣∣
S̃0+S̃2

≡ −U�w+∞
i − UΩD2δ1i . (5.26)

Identity (5.26) can be compared with (6.14) of Auton (1987) for the x2–component of
the force to give {

−1

ρ0

pn2 − u2ujnj

}∣∣∣∣
S̃0+S̃2

≡ −U�w+∞
2 |S̃2

. (5.27)

Thus, (5.27) agrees exactly with (6.14) of Auton, taking account of his difference in
sign and our division by the fluid density.

6. The lift force on an arbitrarily shaped body
6.1. The contribution to the force integral from the stream surface S̃1

We shall proceed by evaluating in turn the contributions from the three components
�vΩ

i + �wi(I), �wi(II) and �wi(III) of the rotational disturbance velocity to the term

U (�w1λi − �wjλj δ1i) in (5.22) for the total contribution to the force from S̃1.
First, consider the contribution from the asymptotic approximation to �vΩ

i + �wi(I),
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given by (2.5b) and (4.11) as �vΩ
j + �wj (I) ∼ ΩcΩxj r

−3 − Ωd̃2δ1j + Ωd̃1δ2j , where

d̃1 = −�ϕ|x̃ = c1x1r
−3 + cl �=1Σ̃r−3λl and xj = x1δ1j + Σ̃λj , which upon substitution,

because λjλj = 1, gives

U
([

�vΩ
1 + �w1(I)

]
λi −

[
�vΩ

j + �wj (I)

]
λj δ1i

)∣∣
S̃1

= UΩcΩ (x1r
−3λi − Σ̃r−3δ1i)

− UΩd̃2λi − UΩc1x1r
−3λ2δ1i − UΩcl �=1Σ̃r−3λlλ2δ1i . (6.1)

Dropping odd functions of λ that integrate to zero on the interval 0 < λ < 2π then
λi ≡ 0, λ2 ≡ 0, λ2λl ≡ δ2l/2 and (6.1) simplifies to

U
([

�vΩ
1 + �w1(I)

]
λi −

[
�vΩ

j + �wj (I)

]
λj δ1i

)∣∣
S̃1

≡ −UΩd̃2λi − UΩ
(
cΩ + 1

2
c2

)
Σ̃r−3δ1i . (6.2)

Secondly, consider the contribution from �wi(II) whose asymptotic approximation is
given by (4.19). By inspection, it can be seen that �wj (II)λj ≡ 0 since λj ≡ 0. In
addition dropping odd functions of λ then λkλi ≡ δki �=1/2 we find

U (�w1(II)λi − �wj (II)λj δ1i)|S̃1
≡ −1

8π
UΩε1liΣ̃r−3

∫
S̃0

∂D ′
1/∂x ′−∞

3 x ′+∞
l �=1 ds′−∞. (6.3)

Finally, consider the contribution from �wi(III) whose asymptotic approximation is
given by (4.22). Again by inspection it can be seen that �w1(III)λi ≡ 0 because for
integration over 0 < λ < 2π then λi ≡ 0 and λiλjλk ≡ 0. Moreover, since λjλl ≡ δjl �=1/2
then by changing the summation indices to prevent duplication we find

U (�w1(III)λi − �wj (III)λj δ1i)|S̃1
≡ − 1

8π
UΩδ1iεlp1Σ̃r−3

∫
S̃0

∂D ′
p �=1

∂x ′−∞
3

x ′+∞
l �=1 ds′−∞. (6.4)

We can now combine the three contributions (6.2), (6.3) and (6.4) for �vΩ
i + �wi(I),

�wi(II) and �wi(III), respectively, into the term U (�w1λi − �wjλj δ1i)|S̃1
of (5.22) to

give{
−1

ρ0

pni − uiujnj

}∣∣∣∣
S̃1

≡ −1

8π
UΩΣ̃r−3

∫
S̃0

[
ε1li

∂D ′
1

∂x ′−∞
3

+ δ1iεlp1

∂D ′
p �=1

∂x ′−∞
3

]
x ′+∞

l �=1 ds′−∞

− UΩcΩΣ̃r−3δ1i − 3
2
UΩc2Σ̃

3r−5δ1i . (6.5)

Note that the term UΩd̃2λi in the integral for the total contribution (5.22) cancels
identically with the contribution from �w1(I) given by (6.2).

Finally, employing the identities∫ 2π

0

∫ +∞

−∞
r−3 dx1 dλ = 4πΣ̃−2,

∫ 2π

0

∫ +∞

−∞
r−5 dx1 dλ = 8

3
πΣ̃−4,

it follows from (6.5) that the contribution fi |S̃1
from S̃1 to the total force (5.1) is

given by

1

ρ0

fi |S̃1
= − 1

2
UΩ

∫
S0

[
ε1li

∂D ′
1

∂x
′−∞
3

+ δ1iεlp1

∂D ′
p �=1

∂x ′−∞
3

]
x ′+∞

l �=1 ds′−∞ − 4πUΩ(cΩ + c2)δ1i .

Identity (6.6) corresponds to our generalization of Auton’s equation (6.13), allowing
for his sign difference and our placement of the fluid density on the left-hand side of
the equation. The proof of the equality between (6.6) and Auton’s (6.13) in his case
of a spherical body will be addressed in the discussion of § 7.
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6.2. The contribution to the force integral from the disk S̃2

In the same way as in § 6.1 we shall evaluate the contributions to (5.26) from the three
components �w+∞

i(I) , �w+∞
i(II) and �w+∞

i(III) of the rotational disturbance velocity in the

trailing vortex. First, it follows from (4.14) that �w+∞
i(II) is of order O(a3

BΩX̃−2) on S̃2

and therefore contributes a term of order O(a3
BUΩΣ̃2/X̃2) to the force integral which

can be neglected, namely fi(II)|S̃2
= 0. As argued in § 4.2, �w+∞

i(I) can be approximated
by equation (4.11) in the region ρ−∞ > Σ whilst it can also be assumed that it is
identically zero for ρ−∞ < Σ . �w+∞

i(III) is approximately equal to the two-dimensional
Biot-Savart integral of �ω′©2

j in the region ρ−∞ < Σ as derived in (4.24b) and given
by:

�w+∞
i(III) ∼ − 1

2π
Ωεijk �=1

∫
S2

∂D ′
j

∂x ′−∞
3

∂

∂xk

(log η)|S̃2
ds′+∞. (6.7)

Note that the two-dimensional Biot-Savart integral is appropriate because �w+∞
i(III) is

independent of x1 in the trailing vortex and could also be obtained from its three-
dimensional form (4.20) by employing the argument used in Batchelor (1967, p. 527)
to derive his equation (7.3.1).

First, we shall evaluate the contribution of �w+∞
i(I) , namely �w+∞

i(I) = Ωεi3kd̃k , to

the force integral on S̃2 as given by (5.26). If we approximate the drift vector d̃k|S̃2

evaluated on S̃2 by the total drift D̃k we find

1

ρ0

fi(I)|S̃2
= −UΩεi3k

∫
S̃2−S2

d̃k|S̃2
ds ∼ −UΩεi3k

∫
S̃2−S2

D̃k ds. (6.8)

Here, D̃k on the annulus S̃2 − S2 is found by taking the limit as x1 → +∞ in (2.17)
to obtain

D̃k =

∫ +∞

−∞
−�ϕ,k|x̃ dx1 =

∫ +∞

−∞
−�ϕ,k �=1|x̃ dx1 =

∫ +∞

−∞
cl �=1(δlk �=1r

−3 − 3ρ2r−5λlλk) dx1.

(6.9)

Dropping odd functions of λ when D̃k is integrated over the interval 0 < λ < 2π then
λlλk ≡ δlk �=1/2 and, therefore,

D̃k ≡ ck �=1

∫ +∞

−∞

(
r−3 − 3

2
ρ2r−5

)
dx1 ≡ − 1

2
ck �=1

∫ +∞

−∞

d

dx1

(x1r
−3) dx1 = 0. (6.10)

The force contribution fi(I)|S̃2
due to �w+∞

i(I) from S̃2, therefore, is identically zero.
Finally, we evaluate the contribution of �w+∞

i(III) to the force integral on S̃2 as
given by (5.26). Substituting (6.7) into (5.26) and reversing the order of the double
integration we obtain

1

ρ0

fi(III)|S̃2
=

1

2π
UΩεijk �=1

∫
S2

∂D ′
j

∂x ′−∞
3

(∫
S̃2

∂

∂xk �=1

(log η)|S̃2
ds

)
ds+∞−UΩδ1i

∫
S̃2

D2 ds.

(6.11)

Note that by changing the integration variable from ds+∞ to ds−∞ using (2.20) then∫
S̃2

D2 ds+∞ =
∫

S̃0
D2 ds−∞ which is equal to the x2-component of the drift-volume

given by (3.11). Applying the divergence theorem to the inner integral, and the
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identity for the drift volume given by (3.11) while noting from Batchelor (1967,
p. 403) that c2 = −VB/(4π)C21, then

1

ρ0

fi(III)|S̃2
=

1

2π
UΩεijk �=1

∫
S2

∂D ′
j

∂x ′−∞
3

(∫ 2π

0

log η|C̃2
λkΣ̃ dλ

)
ds′+∞ + 2πUΩc2δ1i .

(6.12)

Here, C̃2 is the perimeter contour of S̃2. Now because ρ ∼ Σ̃ on C̃2 which is a large
distance from the integration domain S2, we can approximate η to highest order by
neglecting terms of order (ρ ′+∞/Σ̃)2 to give

η|C̃2
=

[(
xl �=1 − x ′+∞

l �=1

)(
xl �=1 − x ′+∞

l �=1

)]1/2

=
[
Σ̃2 + (ρ ′+∞)2 − 2x ′+∞

l �=1 xl �=1

]1/2 ∼ Σ̃

(
1 − ρ ′+∞

Σ̃
λ

′

lλl

)
. (6.13)

Since for small x then log(1 + x) ∼ x, it follows that on C̃2

log η|C̃2
∼ log Σ̃ − ρ ′+∞/Σ̃λ′

lλl . (6.14)

We can now substitute the approximation (6.14) for log η into (6.12), noting that
in the integration with respect to λ over the interval 0 < λ < 2π then λl ≡ 0 and
λlλk ≡ δlk �=1/2 to obtain

∫ 2π

0

log η|C̃2
λkΣ̃dλ ∼ −πρ ′+∞λ′

k = −πx ′+∞
k �=1 . (6.15)

Now substituting (6.15) into (6.12), we obtain the required identity for fi(III)|S̃2
, the

contribution from �w+∞
i(III) to the force from S̃2, as

1

ρ0

fi(III)|S̃2
= − 1

2
UΩεijk �=1

∫
S2

∂D ′
j

∂x−∞
3

x ′+∞
k ds′+∞ + 2πUΩc2δ1i . (6.16)

Combining (6.8), (6.10) and (6.16), changing the surface integration in (6.16) from
ds′+∞ to ds′−∞ using (2.20) and writing εijl �=1 = ε1j lδ1i +εi1lδ1j , we find the contribution

fi |S̃2
to the total force from S̃2 is given by

1

ρ0

fi |S̃2
= − 1

2
UΩ

∫
S0

[
εi1l

∂D ′
1

∂x ′−∞
3

+ δ1iε1j l

∂D ′
j �=1

∂x ′−∞
3

]
x ′+∞

l ds′−∞ + 2πUΩc2δ1i . (6.17)

Finally, by writing εi1l = ε1li and ε1j l = −εlj1, we can alternatively express (6.17) as
below, this form now showing explicitly the components of force parallel (δ1i) and
perpendicular (ε1li) to the ambient flow direction.

1

ρ0

fi(III)|S̃2
= − 1

2
UΩ

∫
S0

[
ε1li

∂D ′
1

∂x ′−∞
3

− δ1iεlj1

∂D ′
j �=1

∂x ′−∞
3

]
x ′+∞

l ds′−∞ + 2πUΩc2δ1i . (6.18)

Identity (6.18) corresponds to our generalization of Auton’s equation (6.15) whose
equality will be proved in § 7 for the case of the sphere.

6.3. The summed contributions to the force integral from S̃1 and S̃2

The total force fi on the body is obtained by adding the contributions fi |S̃1
given by

(6.6) and fi |S̃2
given by (6.18). Note that the terms parallel to the flow direction, that

involve the off-axial components Dj �=1 of the total drift vector, cancel exactly, leaving
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the axial force proportional to cΩ + c2/2. We can evaluate cΩ by taking the sum of
(5.22) and (5.26) to show the axial force is given by

f1 = −U

[∫
S̃1

{
�wjλj − 1

2
ΩΣ̃[c2(r

−3 − 3r−5Σ̃2)
}

ds +

∫
S̃2

{
∆w+∞

1 + ΩD2

}
ds

]
.

Furthermore, by applying the integral identities used to derive (6.6) from (6.5) and to
derive (6.12) from (6.11) it follows that

f1 = −U

[∫
S̃1

�wjλj ds +

∫
S̃2

�w+∞
1 ds

]
.

Finally, by applying the bounds involving �wj and �nj that were used to derive
(5.17) from (5.16), we also find that f1 ∼ −U

∫
S̃ �wjnj ds. Thus, the axial force is

proportional to the volume flux generated by the disturbance velocity across the
asymptotic surface S̃ which, because the velocity field is incompressible, must be
equal to the volume flux across the body surface SB , namely f1 = −U

∫
SB

�wjnj ds.
However, because wjnj |B = 0 then f1 = UΩ

∫
SB

x2n1 ds and, by applying the

divergence theorem, f1 = 0 and, therefore, cΩ = −c2/2. The total force, therefore, is
given by (6.19) which acts in a direction perpendicular to the flow direction

1

ρ0

fi =
1

ρ0

fi |S̃1+S̃2
= −UΩε1li

∫
S0

∂D ′
1

∂x ′−∞
3

x ′+∞
l �=1 ds′−∞. (6.19)

The identity (6.19) corresponds to our generalization of Auton’s equation (6.16). If
comparing the two identities, note the misprinted sign in Auton’s paper. The equality
of (6.19) with Auton’s (6.16) for his case of a spherical body is left to the discussion
in § 7.

One final step is required in our argument to express the total force, (6.19), in a
form that is more readily comparable to the result for the sphere. To do this, we
express the off-axis coordinates x ′+∞

l �=1 of the far downstream streamlines in terms of
the total drift as

x ′+∞
l �=1 = x ′−∞

l �=1 − D ′
l �=1. (6.20)

Now substitute the identity (∂/∂x ′−∞
3 (D ′

1x
′−∞
l �=1) = D ′

1δ3l + (∂D ′
1/∂x ′−∞

3 )x ′−∞
l �=1 into (6.19).

Note that when evaluated on the perimeter contour C0 of S0, D ′
1 can be approximated

by −�ϕ′ and, therefore, D ′
1x

′−∞
l �=1 is of order O(a3

BΣ̃/X̃2) on C0 and makes a

contribution of O(a3
BUΩΣ̃2/X̃2) to the force integral which can be neglected. Since

ε1liδ3l = −δ2i and ε1li = −εil1, we can alternatively write

1

ρ0

fi = −UΩδ2i

∫
S0

D ′
1 ds′ − UΩεil1

∫
S0

∂D ′
1

∂x ′−∞
3

D ′
l �=1 ds′−∞. (6.21)

Finally, applying Darwin’s theorem in the form (3.11), we can now relate the force to
the added mass coefficient C11 and the volume of the body VB as

1

ρ0

fi = −VBC11UΩδ2i − UΩεil1

∫
S0

∂D ′
1

∂x ′−∞
3

D ′
l ds′−∞. (6.22)

7. Discussion
First, we will make some general observations about the physical origin of the

newly identified lift term fi given by (7.1), below, then we explain how the result can
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be applied to determining the force on bodies in real fluids taking into account the
effects of boundary-layer vorticity and, finally, we discuss the body shapes for which
the term is non-zero.

1

ρ0

fi = −UΩεil1

∫
S0

∂D ′
1

∂x ′
3

−∞ D ′
l ds′−∞. (7.1)

Since the integrand of (7.1) is of order O(a6
Bρ−5) as ρ → +∞, then the physical effect

from which the lift force derives must lie very close to the body surface and, therefore,
must be sensitive to small changes in the body shape.

When applying the results to real fluids it is important to appreciate that the surface
SB , being arbitrary, need not be coincident with the body. SB could instead be defined
as the fluid surface SBF that encloses the fluid immediately surrounding the body that
is affected by boundary-layer or shear-layer vorticity. Necessarily, SBF must be closed
and, therefore, this approach cannot be used on a body with a turbulent wake when
the bow streamlines do not close behind the stern. On the upstream bow surface,
unless it has a re-entrant shape, SBF would lie close to the body being separated
only by a narrow boundary-layer region. If the bow surface is re-entrant, however, a
stagnation or recirculation zone may form in which case SBF should be chosen to be
coincident with the outer boundary of this bow fluid region. If the body has a slender
shape, whose chord is aligned to the mean flow direction, then separation may not
occur and SBF would differ only from the body shape by the intermediate boundary
layer. Bodies with bluff or re-entrant stern shapes are likely to cause separation and,
in a similar way to that described for the re-entrant bow shape, SBF should be
chosen as the outer boundary of the wake recirculation zone whose dimension may
be comparable with the transverse cross-section of the body. With our results for
the force on SBF , the net force on the body can then be calculated by combining
it with an additional force balance for the intermediate fluid region SBF − SB . For
boundary-layer regions, the tangential shear stress would be predominant. For wake
recirculation zones the axial drag force would be predominant. Note that the axial
force is predicted to be identically zero under the ideal-fluid assumptions of our
theoretical analysis. Note also that any substantial difference in size between SB

and SBF would give rise to significant differences between the added mass tensor
coefficients CB

ij and total drift-vector DB
l for the body SB and the corresponding

quantities CBF
ij and DBF

l for the enclosing region SBF.
Clearly, for body shapes for which the off-axis total drift vector components are

zero, namely Dl �=1 = 0, then (7.1) is identically zero. Such shapes include bodies of
revolution whose symmetry axis is aligned with the ambient flow. They also include
bodies that have reflective symmetry about three mutually orthogonal planes with
one of the principal axes aligned with the flow direction. This latter class include
the ellipsoid. It is possible to argue that the off-axis total drift vector components
are identically zero for these shapes on geometrical grounds by considering the drift
experienced by a string of particles that initially lie on a far upstream circle ρ = ρ−∞.
For all of these body shapes, their symmetry demands that the particle string when
on the far downstream side of the body remains circular with radius ρ = ρ+∞, say.
In addition, since the string maps out the surface of a stream tube and the axial
component of the velocity field is equal to U at both the far upstream and far
downstream ends of the stream tube, then the volume fluxes through both circles are
equal. The radii of the two circles are, therefore, also equal, namely ρ−∞ = ρ+∞. It
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follows that the off-axis starting coordinates of the string particles are equal to their
off-axis finishing coordinates, namely x−∞

l �=1 = x+∞
l �=1 and, therefore, Dl �=1 = 0.

The force term (7.1) will also be identically zero for body shapes that generate a
total drift function that is symmetrical about two mutually orthogonal lines in the far
downstream x2 ×x3 plane. The reason is simply that such a shape would result in Dl �=1

being symmetric about these two lines while ∂D1/∂x−∞
3 would be antisymmetric about

the same lines. This follows because the differential ∂x−∞
3 can be resolved into two

mutually perpendicular differentials along the two symmetry lines. Such body shapes
include ellipsoids irrespective of the how the ellipsoid is oriented to the flow direction.
Another that has been considered in detail by the author is the binary sphere system.
For this latter case the additional force term is identically zero irrespective of how
the line of centres of the two spheres is aligned to the flow.

In all these exceptional cases, the lift force given by (6.22) reduces to

1

ρ0

fi = −VBC11UΩδ2i . (7.2)

Equation (7.2) is in agreement with the analysis of Auton (1987) for the sphere and
also the combined experimental and computational fluid dynamic studies reported by
Rife et al. (1997) for some bodies of revolution.

The following discussion will address the three main areas of the proof. First,
the generalization of Darwin’s theorem in § 3. Secondly, the derivation of the
asymptotic approximations to the rotational disturbance velocity given in § 4. Finally,
the derivation of the total force from the asymptotic surface integral in §§ 5 and
6. Detailed comparisons will be provided with the independent studies by Darwin
(1953), Lighthill (1956, 1957) and Auton (1987) in order to provide support for the
correctness of our proof.

Throughout the whole of our argument we make only two applications of Darwin’s
theorem. First, at the beginning of § 6.3 when we argue that the axial force f1 is
identically zero. Secondly, when we relate the final expression (6.21) for the lift force
to the added mass coefficient C11. Consequently, to determine the off-axial lift force
we use only the x1-component of the general identity that we derived in (3.11) and
which Darwin originally determined in his (8.9), his hydrodynamic mass H being
equal to our added mass VBC11.

We shall now compare in detail our analysis in § 4 with that of § 3 in Lighthill
(1956). It is important to note that Lighthill’s analysis supposes that the only non-
zero component of the disturbance vorticity (referred to as the vorticity change by
Lighthill) in the trailing vortex lies in the x1-direction. This assumption is embodied
in his equation (15). In our general analysis, however, the disturbance vorticity �ω+∞

i

in the trailing vortex is shown to have the form given by (1.16) as

�ω+∞
l = −Ω

∂Dl

∂x−∞
3

. (7.3)

Thus, Lighthill’s analysis supposes that both off-axis components of the total drift
vector have zero gradients in the x3-direction, namely ∂Dl �=1/∂x−∞

3 = 0. However,
because the total drift vector Dl tends to zero as ρ−∞ → +∞, then the off-axis total
drift components must be identically zero, namely Dl �=1 = 0. Lighthill’s argument,
therefore, is restricted to a limited class of body shapes some of which are discussed
earlier in this section. It follows from our identity (3.11), that Lighthill’s added mass
coefficient tensor has the form C11δ1i and, therefore, the coefficients c2 and c3 of the
asymptotic form of the irrotational disturbance velocity �vi are identically zero. This
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is also the reason why, in Lighthill’s analysis of the asymptotic form for �wi , the
irrotational velocity �vΩ

i can be neglected since it is of order O(r−3).
We shall now compare our general results for the asymptotic approximations of

the rotational disturbance velocity with those of Lighthill, noting that in his notation
Ω = −A. The following identities (7.4) hold, therefore, for the recurrent terms in our
equations where in his case of a sphere of radius a then VBC11 = VBCM = 2πa3/3.∫

S0

∂D ′
p �=1

∂x ′−∞
3

x ′+∞
l �=1 ds′−∞ = 0,

∫
S0

∂D ′
1

∂x ′−∞
3

x ′+∞
l ds′−∞ = −VBCMδ3l . (7.4)

Our result (4.11) for �w̃i , the asymptotic form of the rotational disturbance velocity
�wi(I) on the streamlines that remain far from the body, agrees exactly with (19) of
Lighthill (1956). Note that he describes �w̃i as the velocity field corresponding to
his asymptotic form (18) of his vorticity change ω1. Our result (4.18) for �wi(II) is
equal to v2 of Lighthill’s equation (20) where his ω2, the difference in the vorticity
change ω1 from his asymptotic form (18), is equal to our �ω©2

j . Thus, our (4.18) is in
agreement with Lighthill’s (20), noting that the sign of Lighthill’s (20) is incorrect as
pointed out in Lighthill (1957). Substituting (7.4) into (4.18) we obtain the asymptotic
form (7.5) below for �wi(II), which is in agreement with Lighthill’s (22) once the error
in the sign of Lighthill’s equation is corrected.

�wi(II) ∼ −1

4π
VBCMΩεi3k(r

−1),k. (7.5)

Lighthill (1956) makes the mistake of not calculating the contribution from �wi(III),
which he corrects in Lighthill (1957). Quoting from the theory of the horseshoe vortex,
his revised expression for v2 is given by his (85), which now corresponds to our sum
�wi(II) +�wi(III). To obtain an expression for �wi(III) substitute (7.4) above into (4.22)
to give

�wi(III) ∼ 1

4π
VBCMΩεi1k(ρ

−2[1 + x1r
−1]{δk3 − 2λkλ3} − x1r

−3λkλ3). (7.6)

If we now write εi3k = −δ1iδ2k + δ2iδ1k and (r−1),k = −x1r
−3δ1k − ρr−3λk , we can

split (7.5) for �wi(II) into δ1i , δ2i and δ3i components using the identities εi3k(r
−1),k =

ρr−3λ2δ1i −x1r
−3δ2i and εi1k = δ3iδ2k − δ2iδ3k . Combined with the identities 1−λ2

3 = λ2
2

and 1 − 2λ2
3 = −1 + 2λ2

2, we find

�wi(II) + �wi(III) ∼ −1

4π
VBCMΩΘi (7.7)

where the vector Θi can be expressed in terms of its three Cartesian components as

Θi = ρr−3λ2δ1i + ρ−2[1 + x1r
−1]δ2i − {2ρ−2[1 + x1r

−1] + x1r
−3}λ2

2δ2i

− {2ρ−2[1 + x1r
−1] + x1r

−3}λ2λ3δ3i . (7.8)

The equality between our (7.7) and (85) of Lighthill (1957) follows by noting that

Θi = {x2ρ
−2[1 + x1r

−1]},i . (7.9)

The identity (7.9) can be proved simply by writing x2ρ
−2[1 + x1r

−1] in cylindrical
coordinates as ρ−1λ2[1 + x1r

−1] and employing the partial derivatives (∂/∂x1)(.)
and (∂/∂xk �=1)(.) = λk(∂/∂ρ)(.) − λ3/ρδ2k(∂/∂λ)(.) + λ2/ρδ3k(∂/∂λ)(.) whilst noting that
∂λ2/∂λ = −λ3, λ

2
2 + λ2

3 = 1 and ∂r/∂ρ = ρ/r .
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We shall now compare our evaluation of the force integral (5.1) with that in § 6
of Auton (1987) for the sphere. The contribution fi |S̃1

to the force from the stream
surface S̃1 is given by (6.6) which upon substituting the identities (7.4) for the sphere
gives

1

ρ0

fi |S̃1
= 1

2
VBCMUΩε13i = − 1

3
πa3UΩδ2i . (7.10)

This result agrees with Auton’s (6.13) which in our notation is equal to −fi |S̃1
.

Similarly, (6.18) yields the force contribution fi |S̃2
from the downstream disk as

1

ρ0

fi |S̃2 = 1
2

VBCMUΩε13i = − 1
3

πa3UΩδ2i . (7.11)

Identity (7.11), therefore, is in agreement with Auton’s (6.15) which in our notation
is equal to −fi |S̃2. Thus, S̃1 and S̃2 contribute equally to the total force in Auton’s
argument. In our argument the contributions from S̃1 and S̃2, given by (6.6) and
(6.18), respectively, differ, but only in the x1-component of the force which vanishishes
identically when the two contributions are added together. The result is that S̃1 and
S̃2, as in Auton’s case, contribute equally to the net force each contributing

− 1
2
UΩε1li

∫
S0

∂D ′
1

∂x ′
3

−∞ x ′+∞
l �=1 ds′−∞.

It is important to point out that our derivation in § 6.2 for the contribution to the
force differs from Auton’s in a subtle but important way. Auton employs his identity
(6.6) for the rotational disturbance velocity in the trailing vortex. In our argument,
we employ the two-dimensional Biot-Savart integral given by (7.12), namely

�w+∞
i(III) ∼ −1

2π
Ωεijk �=1

∫
S2

∂D ′
j

∂x ′
3

−∞
∂

∂xk

(logη)|S̃2
ds′+∞. (7.12)

In fact, Auton’s (6.6) is equal to our (7.12) provided the integration domain S2 in
(7.12) is replaced by S̃2. Note that in Auton’s notation his Σ corresponds to our Σ̃ .
The difference is that the integration region in our Biot-Savart integral (7.2) is over
S2 and not S̃2. We purposely chose the radius of S2 as Σ where Σ � Σ̃ . This
crucial step then allows us to evaluate the force integral (6.11), having first applied
the divergence theorem, by using an asymptotic approximation of the integrand on
the perimeter contour of S̃2. This step is only possible because the points on the
perimeter contour of S̃2 lie at a large distance from the integration range S2.

Appendix A. d̃i = O(a3
BΣ̃−2) and �ni = O(a3

BΣ̃−3)

The approximation for d̃i follows immediately by noting that �ϕ,i = O(a3
Br−3)

where (r2)|x̃ = x2
1 + Σ̃2 and, therefore,

d̃i =

∫ x1

−∞
−�ϕ,i |x̃ dx1 = O

(
a3

B

∫ +∞

−∞
r−3 dx1

)
= O

(
a3

BΣ̃−2
)
. (A 1)

To approximate �ni |x̃ we make use of the following identity for the normal ni which
is obtained by parameterization of the surface with respect to the coordinates λ and
x1, for example as shown in Pozrikidis (1997, pp. 15–16).

nids = εijk

∂xj

∂λ

∣∣∣∣
x̃

∂xk

∂x1

∣∣∣∣
x̃

dλ dx1 = (λi + �ni |x̃) Σ̃ dλ dx1. (A 2)
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Note that, to highest order, the stream surface is approximated by the cylinder ρ = Σ̃

whose normal is λi . To second order, the surface vector is given by (2.16) as

xi = x̃i − d̃i = x1δ1i + Σ̃λi − d̃i . (A 3)

Substituting (A 3) into the partial differentials of (A 2) we find

∂xj/∂λ|x̃ ∼ Σ̃
∂λj

∂λ
− ∂d̃j

∂λ
,

∂xk

∂x1

∣∣∣∣
x̃

∼ δ1k − ∂d̃k

∂x1

∣∣∣∣
x̃

= δ1k + �ϕ,k|x̃ (A 4)

Now substitute (A 4) into the identity (A 2) for the normal vector to obtain

(λi + �ni |x̃) = εijk(δ1k + �ϕ,k) Σ̃−1 ∂xj

∂λ
= εij1

∂λj

∂λ
− εij1 Σ̃−1 ∂d̃j

∂λ

+ εijk

∂λj

∂λ
�ϕ,k + O(Σ̃−2r−3). (A 5)

Finally, noting that εij1∂λj /∂λ = λi and �ϕ,k = O(a3
Br−3), we obtain the required

approximation for �ni |x̃ , namely

�ni |x̃ ∼ −εij1Σ̃
−1 ∂d̃j

∂λ
+ εijk

∂λj

∂λ
�ϕ,k = O

(
a3

BΣ̃−3
)
. (A 6)

Appendix B. Asymptotic identities for Bk =
∫ +∞

X
(∂/∂xk)(1/ξ )dx ′

1

Consider the cases k = 1 and k �= 1 separately. Noting that ξ = [(x ′
1 − x1)

2 + η2]1/2

we integrate with respect to x ′
1 to obtain

Bk=1 =
[
−[(x ′

1 − x1)
2 + η2]−1/2

]+∞
X

= [(x1 − X)2 + η2]−1/2, (B 1)

Bk �=1 =

∫ +∞

X

(x ′
k �=1 − xk �=1) ξ−3dx ′

1 = (x ′
k �=1 − xk �=1) η−2[(x ′

1 − x1)[(x
′
1 − x1)

2 + η2]−1/2]+∞
X ,

(B 2a)

= (x ′
k �=1 − xk �=1) η−2

[
1 + (x1 − X)[(x1 − X)2 + η2]−1/2

]
. (B 2b)

We need to consider the evaluations of these functions at xk which lie on the stream
surface S̃1 with radius Σ̃ and length X̃. The integration variable x ′

k on the other
hand lies within the region V which has radius Σ and length X. Now since we
have assumed that aB � Σ � X � Σ̃ � X̃ we can then make the approximation
(x1 − X) ∼ x1 and neglect terms of order ρ ′2/ρ2 to obtain

η2 = (xl �=1 − x ′
l �=1)(xl �=1 − x ′

l �=1) = ρ2 + ρ ′2 − 2x ′
l �=1xl �=1 ∼ ρ2 − 2x ′

l �=1xl �=1. (B 3a)

Furthermore, by the binomial theorem

η−2 ∼ ρ−2(1 + 2ρ−2x ′
l �=1xl �=1). (B 3b)

Noting that r2 = x2
1 + ρ2, it follows from (B 1) that

Bk=1 ∼ [x2
1 + η2]−1/2 ∼ [x2

1 + ρ2 − 2x ′
l �=1xl �=1]

−1/2

∼ r−1(1 + r−2x ′
l �=1xl �=1) ∼ r−1 + (ρr−3λl)x

′
l �=1, (B 4)



The lift force on an arbitrarily shaped body 141

and from (B 2b) that

Bk �=1 ∼ (x ′
k �=1 − xk �=1)η

−2
[
1 + x1

[
x2

1 + η2
]−1/2]

∼ ρ−2(x ′
k �=1 − xk �=1)(1 + 2ρ−2x ′

l �=1xl �=1)[[1 + x1r
−1] + x1r

−3x ′
l �=1xl �=1]. (B 5a)

Neglecting terms of order ρ ′2/ρ2 in Bk �=1, we find

Bk �=1 ∼ ρ−2[1 + x1r
−1]{(x ′

k �=1 − xk �=1) − 2ρ−2 xk �=1xl �=1x
′
l �=1}

− x1r
−3ρ−2 xk �=1xl �=1x

′
l �=1. (B 5b)

By writing xk �=1 = ρλk , (B 5b) can be alternatively expressed as

Bk �=1 ∼ −ρ−1[1 + x1r
−1]λk + (ρ−2[1 + x1r

−1]{δk �=1l − 2λkλl} − x1r
−3λkλl)x

′
l �=1. (B 5c)

Appendix C. �ωi − �ω+∞
i ∼ O(Ωa3

Bx−3
1 ) as x1 → +∞

By the definition given in equation (4.7), it follows that for large positive values of
x1, where the streamlines asymptotically approach x̃+ and the evaluation point is so
far from the body that the asymptotic form for the disturbance velocity �ϕ,i can be
used in the integral, we find

�ωi − �ω+∞
i ∼ Ω

∂

∂x−∞
3

[∫ +∞

x1

�ϕ,i |x̃+ dx1

]
∼ −Ω

∂

∂x−∞
3

[∫ +∞

x1

(clxlr
−3),i|x̃+ dx1

]
.

(C 1)

Here, |x̃+ denotes evaluation on the far downstream streamlines defined by (4.7). We
now expand the term (clxlr

−3),i = cl(δilr
−3 − 3xlxir

−5) and write xl = x1δ1l + xl �=1 so
as to distinguish between components that are parallel and perpendicular to the flow
direction to obtain

(clxlr
−3),i = cl

(
δilr

−3 −3x2
1r

−5δ1lδ1i

)
−3cl{δ1lxi �=1 +δ1ixl �=1}x1r

−5 −3clxi �=1xl �=1r
−5. (C 2)

Writing x2
1 = r2 − ρ2 and grouping factors of r−3, x1r

−5 and r−5 we obtain

(clxlr
−3),i = cl(δil − 3δ1lδ1i)r

−3 − 3cl{δ1lxi �=1 + δ1ixl �=1}(x1r
−5)

+ 3cl(ρ
2δ1lδ1i − xi �=1xl �=1)r

−5. (C 3)

Note the following integral identities

∫ +∞

x1

r−3 dx1 = ρ−2[1 − (x1r
−1)];

∫ +∞

x1

x1r
−5 dx1 = 1

3
r−3, (C 4a)

∫ +∞

x1

r−5 dx1 = ρ−4
[

2
3

− (x1r
−1)

{
1 − 1

3
(x1r

−1)2
}]

. (C 4b)

By substituting the asymptotic approximations (x1r
−1) = x1[ρ

2 +x2
1 ]

−1/2 ∼ 1−ρ2/2x2
1 ,

(x1r
−1)2 ∼ 1−ρ2/x2

1 and r−1 = [ρ2+x2
1 ]

− 1
2 ∼ 1/x1 into (C 4), we arrive at the following
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approximations∫ +∞

x1

r−3 dx1 ∼ 1
2
x−2

1 + O(ρ2x−4
1 );

∫ +∞

x1

x1r
−5 dx1 = 1

3
x−3

1 + O
(
ρ2x−5

1

)
, (C 5a)

∫ +∞

x1

r−5 dx1 ∼ ρ−4
[

2
3

−
(
1 − 1

2
ρ2/x2

1

){
2
3

+ 1
3
ρ2/x2

1

}]
∼ 1

6
x−4

1 + O
(
ρ2x−6

1

)
. (C 5b)

Substituting (C5) into the integral of (clxlr
−3),i we find∫ +∞

x1

(clxlr
−3),i |x̃+ dx1 ∼ 1

2
cl(δil − 3δ1lδ1i)x

−2
1 − cl{δ1lλi + δ1iλl}ρx−3

1 + O
(
a3

Bρ2x−4
1

)
.

(C 6)

The required result now follows by differentiating with respect to ρ−∞ and letting
x1 → +∞, namely

�ωi − �ω+∞
i ∼ Ωλ3∂/∂ρ−∞

[∫ +∞

x1

(clxlr
−3),i|x̃+ dx1

]

= O
(
Ω∂/∂ρ−∞(ρ+∞)a3

Bx−3
1

)
= O

(
Ωa3

Bx−3
1

)
. (C 7)

REFERENCES

Auton, T. R. 1987 The lift force on a spherical body in a rotational flow. J. Fluid Mech. 183, 199.

Auton, T. R., Hunt, J. C. R. & Prud’homme, M. 1988 The force exerted on a body in inviscid
unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241.

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.

Benjamin, T. B. 1986 Note on added mass and drift. J. Fluid Mech. 169, 251.

Darwin, C. G. 1953 Note on hydrodynamics. Proc. Camb. Phil. Soc. 49, 342.

Eames, I., Belcher, S. E. & Hunt, J. C. R. 1994 Drift, partial drift and Darwin’s proposition.
J. Fluid Mech. 275, 201.

Legendre, D. & Magnaudet, J. 1998 The lift force on a spherical bubble in a viscous linear flow.
J. Fluid Mech. 368, 81.

Lighthill, M. J. 1956 Drift. J. Fluid Mech. 1, 31.

Lighthill, M. J. 1957 Corrigenda to ‘Drift’. J. Fluid Mech. 2, 311.

Magnaudet, J. & Legendre, D. 1998 Some aspects of the lift force on a spherical bubble. Appl.
Sci. Res. 58, 441.

Pozrikidis, C. 1997 Introduction to Theoretical and Computational Fluid Dynamics. Oxford University
Press.

Rife, J., He, J., Song, Y. & Wallis, G. B. 1997 Measurements of the drift force. Nucl. Engng. Design.
175, 71.

Yih, C.-S. 1985 New derivations of Darwin’s theorem. J. Fluid Mech. 152, 163.

Yih, C.-S. 1995 Kinetic-energy mass, momentum mass and drift mass in steady irrotational subsonic
flows. J. Fluid Mech. 297, 29.

Yih, C.-S. 1997 Evolution of Darwinian drift. J. Fluid Mech. 347, 1.


